skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Loss, Julian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 2, 2025
  2. Aggarwal, Divesh (Ed.)
    We investigate the relationship between the classical RSA and factoring problems when preprocessing is considered. In such a model, adversaries can use an unbounded amount of precomputation to produce an "advice" string to then use during the online phase, when a problem instance becomes known. Previous work (e.g., [Bernstein, Lange ASIACRYPT '13]) has shown that preprocessing attacks significantly improve the runtime of the best-known factoring algorithms. Due to these improvements, we ask whether the relationship between factoring and RSA fundamentally changes when preprocessing is allowed. Specifically, we investigate whether there is a superpolynomial gap between the runtime of the best attack on RSA with preprocessing and on factoring with preprocessing. Our main result rules this out with respect to algorithms that perform generic computation on the RSA instance x^e od N yet arbitrary computation on the modulus N, namely a careful adaptation of the well-known generic ring model of Aggarwal and Maurer (Eurocrypt 2009) to the preprocessing setting. In particular, in this setting we show the existence of a factoring algorithm with polynomially related parameters, for any setting of RSA parameters. Our main technical contribution is a set of new information-theoretic techniques that allow us to handle or eliminate cases in which the Aggarwal and Maurer result does not yield a factoring algorithm in the standard model with parameters that are polynomially related to those of the RSA algorithm. These techniques include two novel compression arguments, and a variant of the Fiat-Naor/Hellman tables construction that is tailored to the factoring setting. 
    more » « less